Chris Wiegman asks, what are you building? I thought this would be a fun question to answer today. Like a lot of people I have a number of things in flight but I’ll try to limit myself to just a few them.

PiPlex

I have run Plex in my house for a few years to serve up my music collection. In 2021 I also started paying for Plex Pass which gives me additional features. One of my favorite features or add-ons is PlexAmp which gives me a similar to Spotify like experience but for music I own.

Although I’m very happy with the Plex server I have I wondered if it would be feasible to run Plex on a Raspberry Pi. I also wanted to learn how Pi OS images were generated using pi-gen. With that in mind I set out to create a Pi OS image that preinstalls Plex along with some additional tools like Samba to make it easy to get up and running with a Plex server. I named the project PiPlex. I don’t necessarily plan on replacing my existing Plex server with a Pi based solution but the project did serve its intended goal. I learned a bit about how Pi OS images are created and I discovered that it is quite possible to create a Pi based Plex server.

ProxySQL Helm Chart

One of the most exciting things I’ve learned in the past two years or so is Kubernetes. While it is complex it is also good answer to some equally complex challenges in hosting and scaling some apps. My preferred way of managing apps on Kubernetes is Helm.

One app I want install and manage is ProxySQL. I couldn’t find a good Helm chart to get this done so I wrote one and it is available at https://github.com/dustinrue/proxysql-kubernetes. To make this Helm chart I first had to take the existing ProxySQL Docker image and rebuild it so it was built for x86_64 as well as arm64. Next I created the Helm chart so that it installs ProxySQL as a cluster and does the initial configuration.

Site Hosting

I’ve run my blog on WordPress since 2008 and the site has been hosted on Digital Ocean since 2013. During most of that time I have also used Cloudflare as the CDN. Through the years I have swapped the droplets (VMs) that host the site, changed the operating system and expanded the number of servers from one to two in order to support some additional software. The last OS change was done about three years ago and was done to swap from Ubuntu to CentOS 7.

CentOS 7 has served me well but it is time to upgrade it to a more recent release. With the CentOS 8 controversy last year I’ve decided to give one of the new forks a try. Digital Ocean offers Rocky Linux 8 and my plan is to replace the two instances I am currently running with a single instance running Rocky Linux. I no longer have a need for two separate servers and if I can get away with hosting the site on a single instance I will. Back in 2000 it was easy to run a full LAMP setup (and more) on 1GB of memory but it’s much more of a challenge today. That said, I plan to use a single $5 instance with 1 vCPU and 1GB memory to run a LEMP stack.

Cloudflare

Speaking of Cloudflare, did you know that Cloudflare does not cache anything it deems “dynamic”? PHP based apps are considered dynamic content and HTML output by software like WordPress is not cached. To counter this, I created some page rules a few years ago that forces Cloudflare to cache pages, but not the admin area. Combined with the Cloudflare plug-in this solution has worked well enough.

In the past year, however, Cloudflare introduced their automatic platform optimization option that targets WordPress. This feature enables the perfect mix of default rules (without using your limited set of rules) for caching a WordPress site properly while breaking the cache when you are signed in. This is also by far the cheapest and most worry free way to get the perfect caching setup for WordPress and I highly recommend using the feature. It works so well I went ahead and enabled it for this site.

Multi-Architecture Docker Images

Ever since getting a Raspberry Pi 4, and when rumors of an Arm powered Mac were swirling, I’ve been interested in creating multi-architecture Docker images. I started with a number of images I use at work so they are available for both x86_64 and arm64. In the coming weeks I’d like to expand a bit on how to build multi-architecture images and how to replace Docker Desktop with a free alternative.

Finishing Up

This is just a few of the things I’m working on. Hopefully in a future post I can discuss some of the other stuff I’m up to. What are you building?

In late August of 2021 the company behind Docker Desktop announced their plans to change the licensing model of their popular Docker solution for Mac and Windows. This announcement means many companies who have been using Docker Desktop would now need to pay for the privilege. Thankfully, the open source community is working to create a replacement.

For those not aware, Docker doesn’t run natively on Mac. The Docker Desktop system is actually a small Linux VM running real Docker inside of it and then Docker Desktop does a bunch of magic to make it look and feel like it is running natively on your system. It is for this reason that Docker Desktop users get to enjoy abysmal volume mount performance, the process of shuffling files (especially small ones) requires too much metadata passing to be efficient. Any solution for running Docker on a Mac will need to behave the same way and will inherit the same limitations.

Colima is a command line tool that builds on top of lima to provide a more convenient and complete feeling Docker Desktop replacement and it already shows a lot of promise. Getting started with colima is very simple as long as you already have brew and Xcode command line tools installed. Simply run brew install colima docker kubectl and wait for the process to finish. You don’t need Docker Desktop installed, in fact you should not have it running. Once it is complete you can start it with:

colima start

This will launch a default VM with the docker runtime enabled and configure docker for you. Once it completes you will then have a working installation. That’s literally it! Commands like docker run --rm -ti hello-world will work without issue. You can also build and push images. It’s can do anything you used Docker Desktop for in the past.

Mounting Volumes

Out of the box colima will mount your entire home directory as a read only volume within the colima VM which makes it easily accessible to Docker. Colima is not immune, however, to the performance issues that Docker Desktop struggled with but the read only option does seem to provide reasonable performance.

If, for any reason, you need to have the volumes you mount as read/write you can do that when you start colima. Add --mount <path on the host>:<path visible to Docker>[:w]. For example:

colima start --mount $HOME/project:/project:w

This will mount $HOME/project as /project within the Docker container and it will be writeable. As of this writing the ability to mount a directory read/write is considered alpha quality so you are discouraged from mounting important directories like, your home directory.

In my testing I found that mounting volumes read/write was in fact very slow. This is definitely an area that I hope some magic solution can be found to bring it closer to what Docker Desktop was able to achieve which still wasn’t great for large projects.

Running Kubernetes

Colima also supports k3s based Kubernetes. To get it started issue colima stop and then colima start --with-kubernetes. This will launch colima’s virtual machine, start k3s and then configure kubectl to work against your new, local k3s cluster (this may fail if you have an advanced kubeconfig arrangement).

With Kubernetes running locally you are now free to install apps however you like.

Customizing the VM

You may find the default VM to be a bit on the small side, especially if you decide to run Kubernetes as well. To give your VM more resources stop colima and then start it again with colima start --cpu 6 --memory 6. This will dedicate 6 CPU cores to your colima VM as well as 6GB of memory. You can get a full list of options by simply running colima and pressing enter.

What to expect

This is a very young project that already shows great potential. A lot is changing and currently in the code base is the ability to create additional colima VMs that run under different architectures. For example, you can run arm64 Docker images on your amd64 based Mac or vice versa.

Conclusion

Colima is a young but promising project that can be used to easily replace Docker Desktop and if you are a Docker user I highly recommend giving it a try and providing feedback if you are so inclined. It has the ability to run Docker containers, docker-compose based apps, Kubernetes and build images. With some effort you can also do multi-arch builds (which I’ll cover in a later post). You will find the project at https://github.com/abiosoft/colima.

This one is, primarily, for all the people responsible for ensuring a WordPress site remains available and running well. “Systems” people if we must name them. If you’re a WordPress developer you might want to ride along on this one as well so you and the systems or DevOps team can be speaking a common language when things go bad. Often times, systems people will immediately blame developers for writing bad code but the two disciplines must cooperate to keep things running smoothly, especially at scale. It’s important for systems AND developers to understand how code works and scales on servers.

What I’m about to cover is some common performance issues that I see come up and then be misdiagnosed or “fixed” incorrectly. They’re the kind of thing that causes a WordPress site to become completely unresponsive or very slow. What I cover may seem obvious to some, and they are certainly very generalized, but I’ve seen enough bad calls to know there are a number of people out there that get tripped up by these situations. None of the issues are necessarily code related nor are they strictly WordPress related, they apply to many PHP based apps; it’s all about how sites behave at scale. I am going to explore WordPress site performance issues since that’s where my talents are currently focused.

In all scenarios I am expecting that you are running something getting a decent amount of traffic at the server(s). I am assume you are running a LEMP stack consisting of Linux, Nginx, PHP-FPM and MySQL. Maybe you even have a caching layer like Memcached or Redis (and you really should). I’m also assuming you have basic levels of visibility into the app using something like New Relic.

Let’s get started.

Continue reading

Wanted to take a moment to expand on something that Chris Wiegman wrote over on his site about how to use parameters in a make target. This post expands on a previous post of his called, “Automating WordPress Development with Make.” I was really excited about his initial post because make is a tool that I love putting to use. While Make is an older build chain tool, originally release back in 1976, it is just as useful today as ever.

In addition to the method described by Chris, there exists another method that feels a touch more natural than using ENV vars to pass parameters. It looks like this:

# If the first argument is good pass the rest of the line to the target
ifeq (good,$(firstword $(MAKECMDGOALS)))
  # use the rest as arguments for "good"
  RUN_ARGS := $(wordlist 2,$(words $(MAKECMDGOALS)),$(MAKECMDGOALS))
  # ...and turn them into do-nothing targets
  $(eval $(RUN_ARGS):;@:)
endif

.PHONY: bad good

bad:
        @echo "$(MAKECMDGOALS)"

good:
        @echo "$(RUN_ARGS)"

In this example, if we run make bad hello world you will get an error that looks like this:

make bad hello world
bad hello world
make: *** No rule to make target 'hello'.  Stop.

However, if we run make good hello world then the extra parameters are simply passed to the the command in the target. The output looks like this:

make good hello world
hello world

The magic is, of course, coming from the ifeq section of the Makefile. It checks to see if the first word of the Make command goals is the target keyword. If it is, then it removes all of the trailing words and turns them into do-nothing targets allowing them to be used elsewhere in the file.

For reference, I found this trick on https://stackoverflow.com/a/14061796 awhile back and have put it to use in some internal tools where I want to wrap some command with additional steps.

Makefiles are a great tool partly because they allow you to create documentation that remains similar across projects yet allows you to customize what is actually happening behind the scenes. This makes your project much more approachable for new people since you can simply document “run make” and take care of the difficult stuff for them. Advanced users can still get into the Makefile to see what is going on or even customize it.

I hope you find this tip useful!

While building multi-arch images I noticed that it was really unreliable when done in my CI/CD pipelines. After a bit of research, I found that the buildx and the Qemu emulation system aren’t quite stable when used with Docker in Docker. Although I can retry the job until it finishes I decided to look into other ways of doing multi-arch builds with buildx.

Continue reading

For ages, I’ve had an issue with my Mac mini where it wouldn’t shut down properly after some unknown “event” occurs. Either it was running for a certain period of time, I connected to some network share or something else. Whatever it was I could never figure out the exact cause.

What felt like every month or so I’d do a search to see if any body had figured out the issue yet and recently I found this https://apple.stackexchange.com/a/412649. Incredibly the outlined solution seems to have solved the shut down issues I was having. As it turns out, a few years ago I had implemented a “fix” for slow cli apps that was caused by the code signing subsystem of macOS. This fix, in newer releases, caused some kind of issue that prevented the system from shutting down properly. By removing terminal as described my Mac mini has been able to reboot and shut down without issue.

In the post is a link to this site explaining the issue a bit more deeply – https://sigpipe.macromates.com/2020/macos-catalina-slow-by-design/.

If you run Plex at home and access it externally you may want to limit the amount of bandwidth remote access is allowed to use. Not limiting the bandwidth Plex uses will affect other users on the same Internet connection and those playing online games or doing video conferencing will be affected the most. The reason for this is Plex is going to utilize your upload bandwidth, and all of it if you allow it to. Most households have asynchronous connections meaning one direction is slower than the other and typically it is the upload speeds that are drastically slower. This makes sense as most people download content rather than push it to the Internet. Plex, however, turns that around and does push data to the Internet. Since uploads speeds are usually slower than the download speed outside your home you will quickly use up, or saturate, your upload speed. Once the upload capacity from your home is at its limits everything else will suffer in some way. Online video games will get laggy, drop packets, and will feel awful. Video conferencing will become glitchy and even downloads speeds can drop.

Luckily, Plex offers two ways to limit how much bandwidth it will use (though you probably only need to tap into one of them). The first way, and the way you can probably skip, is to set the Plex client itself to be a good citizen in “Quality” section of the settings screen. It looks like this:

Set the “Internet Streaming” video quality to Maximum unless your system can’t handle full quality

Most of the time you can leave this to “Maximum”. If you find your player is still stuttering you can modify this. This is will usually happen if the download speed of your connection is slow or if you just want to save bandwidth.

The more beneficial setting is located in the server settings section under “Remote Access”. The settings on this page will affect your Plex server globally, to all clients. In my home, my upload speed is about 11mbit. To ensure that others in the home have adequate upload capacity I set my upload speed and video quality to 4Mbit, as you can see here:

Set the Internet upload speed to some fraction of your total upload speed

By configuring Plex with a lower value than your total upload you will force the entire server to use less than your total upload speed, regardless of how many streams are coming off of it. This will leave room for other applications on your network if they need it.

Keep in mind that the limit does apply to all remote streams, and if there are enough of them, the setting could be too low and cause stuttering on their side as they need to pause and buffer the content. The setting also applies to downloads so even if someone downloads content to offline it in high quality they will be limited to whatever value you put here.

For a long time, I’ve wanted a Spotify-like experience but with music I’ve collected over the years. I appreciate Spotify because I can stream music on my desktop and phone anywhere I am but I can also download music locally to my phone to save on bandwidth. That said, there are some things that aren’t on Spotify like video game soundtracks or ocremix content that I also want to have with me. While Spotify can download local content to my phone the process is a bit cumbersome and the interface is, honestly, not great for that.

Enter Plex and Plexamp. Plex, probably better known as the tool of choice for those heavily into piracy, is actually a great way to store, catalog, and play your music. But Plexamp (and a paid Plex Pass) as a client really takes the experience up a notch by offering an experience that is entirely focused on music playback including hi-res formats and gapless playback. It also has some really clever genre, mood, and artist-based automatic playlists that are super slick. Combine this with the ability to stream the music from outside your home and offline it (at any bit rate you want including FLAC) and you really have a winner.

While I could do a video showing it off I don’t think I could a better job than this one.

A while ago I wanted to improve my audio setup in my office. I ordered some bookshelf speakers and hooked them up to an old receiver I had sitting around doing nothing. To help improve the setup further I decided to use a USB-C to optical adapter so that I could feed pure digital into my receiver. The receiver has a better DAC than my Mac and it reduced the noise a bit as well. Once I did this however I noticed that sound effects from the system and the first little bit of music would not play. This was because macOS does it’s best to save power and will power off, or whatever it is doing, the sound card. In turn the receiver would see no signal and sort of forget what sound format it was receiving. When audio started to play then it would determine what type of audio it was getting and then output the audio. Of course, this takes enough time that most system sounds won’t play and instead I’d got a small pop sound in the speakers as the receiver “came online”.

To combat this I found this little helper – https://github.com/mttrb/antipopd. This app will send what amounts to a null (in the background it is the say utility saying “space”). This keeps the audio chain alive and prevents any pops or delays in audio output. I highly recommend it.

Working from home doesn’t mean I’m always working from home. Sometimes I am out and about with my laptop. However, I’m also a person who just prefers to use to use a desktop whenever possible. I find the process of disconnecting or reconnecting all the external devices I use tedious so I avoid it as much as possible. This is why my main system is a personal Mac mini from late 2018 and my portable system is a company-provided MacBook Pro from 2015. Since the mini is my primary system, most of what I’m working with is located on that system and I will either ssh into the mini from the portable to run some commands or use SMB to mount the files (over a VPN of course) so I can edit them using VS Code.

One tool I make heavy use of is aws-vault. This tool, which I’ve written about previously, allows you to put your AWS credentials into macOS’s keychain system. Using macOS’s keychain keeps the information off of the file system as plain text and allows me to sync the data between Macs (and iPhone). When sitting at a Mac your keychain will be unlocked when you enter your password. However, when accessing a Mac remotely using ssh the keychain will remain locked which makes using aws-vault and some other tools a bit more difficult to use. Luckily, there is a way to unlock the keychain so you can use it properly.

Once you have a remote shell into your Mac you can issue security list to view the keychains that can be unlocked. In my case, I want to unlock the aws-vault keychain. To do so I issue security unlock /Users/dustin/Library/Keychains/aws-vault.keychain-db. After pressing enter you are asked for your system password. Enter this, press enter again and the keychain will be unlocked. To unlock your default keychain simply issue security unlock.

With your keychain unlocked tools that depend on keychain will begin to work properly.